Hi All,
I am presenting simple boiler point code that can quickly be applied to test technical indicator strategies using Python. The code:
1. downloads daily stock data from google,
2. calculates the short and long moving averages
3. generates the trading signals
4. calculates the daily returns
5. runs the moving average strategy and calculates the cumulative return
6. plots cumulative return of our simple strategy
Here is the code ... enjoy trying it out and extend it as required:
import numpy as np import pandas_datareader as datar import datetime import matplotlib.pyplot as plt date_start = datetime.datetime(2017,1,1) date_end = datetime.datetime(2017,6,30)data = datar.get_data_google('AAPL', date_start, date_end)
short_ma = 5long_ma = 20 data['short_ma'] = data['Close'].rolling(short_ma).mean() data['long_ma'] = data['Close'].rolling(long_ma).mean() data['masig'] = data['short_ma'] - data['long_ma'] data=data.dropna(subset=['masig']) data['signal'] = np.where(data['masig'] > 0, 1, 0) data['signal'] = np.where(data['masig'] < 0, -1, data['signal']) print(data['signal'].value_counts()) data['returns'] = np.log(data['Close']) - np.log(data['Close']).shift(1) data['strategy'] = data['returns'] * data['signal'].shift(1) data['strategy'].cumsum().plot(title='Cumulative Return') plt.show()
Comments
Casino Sbobet
Depo Baccarat
Depo Roulette
Depo Sicbo
Deposit Sicbo
Deposit Casino Online
Daftar Casino
Agen Judi Casino
Prediksi Chievo vs Juventus 28 Januari 2018
Adani Green Energy
shares of Adani Green
Adani Enterprises market cap
BSE Sensex